ECO DESIGN INFORMATION

TECHNICAL DATA

Α								
	В							
P/N:	С	S/N:	D					
		-						

- A Manufacturer name and address
- **B** Product name
- **C** Product part number
- **D** Serial number:

X Production plant YY Year of production

xxxxxx Progressive number specific for each machine

EFFICIENCY AND CONSUMPTION

The equipment has been designed in order to comply with the Directive 2009/125/EC and the Regulation 2019/1784/EU.

Efficiency and idle power consumption:

PART NUMBER	99815047
PRODUCT NAME	COMPACT EVO 410 AC/DC
EFFICIENCY WHEN MAX POWER CONSUMPTION	84,85%
IDLE POWER CONSUMPTION	27W
EQUIVALENT MODEL	No equivalent model

The value of efficiency and consumption in idle state have been measured by method and conditions defined in the product standard EN 60974-1:20XX.

TYPICAL GAS USAGE FOR MIG/MAG EQUIPMENT

	Wire	DC electrode positive		Wire		Gas
Material type	Diameter mm	Current (A)	Voltage (V)	Feeding [m/min]	Shielding Gas	flow [l/min]
Carbon, low alloy steel	0,8 ÷ 1,2	40 ÷ 280	15 ÷ 30	1,0 ÷ 25	Argon 80% CO ₂ 20%	10 ÷ 18
Aluminium	0,8 ÷ 1,6	15 ÷ 300	14 ÷ 29	2,0 ÷ 25	Argon	14 ÷ 22
Stainless steel	0,8 ÷ 1,2	30 ÷ 260	15 ÷ 28	1,8 ÷ 12	Argon 98% CO ₂ 2%	8 ÷ 16
Copper alloy (Bronze)	0,8 ÷ 1,2	40 ÷ 250	14 ÷ 30	2,5 ÷ 11	Argon	12 ÷ 16

TIG PROCESS

In TIG welding process, gas usage depends on cross-sectional area of the nozzle. For comonnly used torches:

Helium = 14-24 l/min Argon = 7-16 l/min

Notice: Excessive flow rates causes turbulence in the gas stream which may aspirate atmospheric contamination into the welding pool.

Notice: A cross wind or draft moving can disrupt the shielding gas coverage, in the interest of saving of protective gas use screen to block air flow.

END OF LIFE

At end of life of product, it has to be disposal for recycling in accordance with Directive 2012/19/EU (WEEE).